
CSC 260L: Java Programming Lab 6

Programming Exercise 6:
Loops

Purpose: Introduction to while loops and for loops

Background readings from textbook: Liang, section 5.2-5.6

Due date for section 001: Monday, February 22 by 10 am

Due date for section 002: Wednesday, February 24 by 10 am

To this point of the semester, we have had to rerun our program every time we have new

input. This is not user friendly. Another programming tool is called the loop (or iterative

statement) that allows a program to repeat a set of code over and over either a set number

of times (for instance, 10 times) or based on some condition (repeat until the user inputs

0). We can use these loops not only to “rerun” a program without having to run it again,

but also to perform computations that require repeated calculations. In Java, there are three

types of loops, the while loop, the do-while loop, and the for loop. This lab addresses the

while loop and for loop.

Part 1: While Loop Overview

A while loop consists of a condition (boolean expression) and a block of code, called the

loop body. The structure of the while loop is
 while(condition)

 body;

As with the if and if-else statement, if the number of instructions in the loop body is more

than 1, we have to place the body inside { } as in
 while(condition)

 {

 body

 }

Each instruction in the body ends in a ; but you do not put a ; after the condition or after

either { }. The way the while loop works is this: test the condition and if true, do the loop

body and repeat. That is, if the condition is true, the body executes and the condition is

tested again and if still true, the body executes and the condition is tested again… The

loop only terminates when the condition is false. At that point (whether the loop body

executes once, ten times, ten million times or zero times), the first instruction after the loop

executes. The while loop is a type of loop in which, if the condition is originally false, the

body does not execute at all. On the other hand, if the condition never changes from true

to false, the loop never terminates. This is called an infinite loop. The main difference

between the while loop and the do-while loop is that the while loop is a pre-test loop, the

condition is tested first while the do-while loop is a post-test loop, the condition is tested

after the loop body executes. This means that in a do-while loop, the loop body will execute

CSC 260L: Java Programming Lab 6

at least one time. In the while loop, the loop body does not necessarily have to execute

depending on the condition.

One last comment. If the condition is true and the loop body executes, the condition is

tested again. If the code in the loop body does not change the condition, then the condition

remains true. If you are not careful, your loop body may never change the result of the

condition and so you have an infinite loop. You must make sure that whatever test you

have in your condition, the loop body can affect that test.

Part 2: Example While Loops

Part 3: Common pitfalls.

1.

2.

3.

Logic error!

Since n never changes in the loop

body, we have an infinite loop.

Logic error!

Notice the ; at the end of the

condition in the while loop. This

while loop is interpreted as “while n

is less than 10, do nothing”. So the

print and n++ instructions are not

reached.

int n = 0;

while(n < 10)

{

 System.out.print(n);

}

int n = 0;

while(n < 10);

{

 System.out.print(n);

 n++;

}

int n = 0;

while(n < 10)

{

 System.out.println(n);

 n++;

}

The statement

n++

 is equivalent to the

statement

n = n + 1.

int sum = 0, value;

System.out.print(‘‘enter a value, 0 to exit: ’’);

value=in.nextInt();

while(value!= 0)

{

 sum=sum+value;

System.out.print(‘‘enter next value, 0 to exit: ’’);

value=in.nextInt();

}

int n = 1;

while(n < 1000)

 n = n * 2;

System.out.println(‘‘The first power of 2 greater than 1000 is ’’ +

n);

In this loop, the user

controls whether to

continue or not by

inputting a number

(0 to quit, non-0 to

continue)

Only 1 instruction in

the loop body so we

don’t need { }

int n = 0, y = 0, x = 1;

while(n = 0)

{

 y = y + x;

 x++;

 if(x > 5) n = 1;

}

Logic error!

Notice the condition says n = 0

instead of n == 0. The result is that n

is set to 0 and this condition is always

true. So no matter what happens

inside the loop, we have an infinite

loop.

CSC 260L: Java Programming Lab 6

4.

Part 4:. A Full Example: Summing User Input

The above code adds to the earlier example. The user inputs an initial value and if it is not

0, we enter the loop body. The value is added to sum and then we ask the user for the next

value. If that value is not 0, this repeats. Once the user enters 0, the loop terminates and

we reach the next instruction after the loop, the output statement which outputs the sum.

Part 5: While Loop Exercise

Enter a full program using the code from part 4 (you will have to add any import statements,

class header, etc). Make sure that you understand how it works and add appropriate

comments. Save, compile and run it and test it under several situations (input three non-

zero values, input one non-zero value, input 0 initially, input both positive and negative

numbers). When done, add the following enhancements.

(1) In addition to displaying the sum of the entered values, display the number of non-zero

values that were entered. You will need to add another variable, call it count, and

since any non-zero will execute the loop body, all you need to do is count++; in the

loop body to count yet another non-zero input. Output count after you output the sum.

(2) If at least one non-zero value was entered, then also display the average of the non-zero

values. This will require that you test to make sure count is not zero after the loop and

if it is not, then compute and output the average. If count is 0, output an error message

int sum = 0, value;

Scanner input = new Scanner(System.in);

System.out.print(‘‘Enter an integer value (0 to quit): ’’);

value = input.nextInt();

while (value != 0)

{

 sum += value;

 System.out.print(‘‘Enter next value (0 to quit): ’’);

 value = input.nextInt();

}

System.out.println(‘‘The sum of the entered values is ’’ + sum);

The statement

sum += value;

is equivalent to the

statement

sum = sum + value;

int sum = 0, value;

System.out.print(‘‘enter a value, 0 to exit:

‘‘);

value=in.nextInt();

while(value!= 0)

{

 sum=sum+value;

}

Logic error!

Compare this code to the second example under

part 2. The difference is that in the loop body,

we have removed the prompt and input

statements so value does not change inside the

loop body and thus, if value != 0 to begin with,

it stays that way forever, an infinite loop! In

fact this will lead to a run-time error in that

eventually sum will overflow memory and the

program terminates with an

ArithmeticException because of the overflow.

CSC 260L: Java Programming Lab 6

because there were no inputs (other than 0) which would result in sum and count being

0 and a computation of 0/0 which itself would cause a division by zero

ArithmeticException error.

(3) Add instructions to also count and display the number of user input values that are odd.

You can test whether value is odd by testing that value % 2 is equal to 1. This will

require yet another variable to count the number of odd inputs. Initialize it to 0, and

add an if statement in the loop body to test if value is odd and increment this variable.

Finally, add an output statement after the loop to output the number of odd values input.

(4) Add another variable which will be input prior to the loop which asks the user for a

target number. With another if statement in the loop body, test if the input value equals

this target and if so, add one to another counter variable. After the loop, output both

the target value and the number of times the user entered target.

(5) Add another variable, max, initialized to zero, to store the largest value entered. In the

loop body, determine if the new input, value, is greater than max (value > max)

and if so, set max to this new value. Output the max value as part of your output.

Let’s assume you run the program entering 10 for target followed by this list of inputs: 5

10 11 1 3 8 10 4 1 6 7 10 7 0. The output of your program might look like this. Notice

that 0 will not be counted as part of the input.
 The sum of the input values is 83

 The number of inputs is 13

 The average of the input values is 6.38

 The number of odd values input is 7

 The value 10 was input 3 times

 The maximum value entered was 11

Part 6: For Loop Overview

The for loop is known as a counting controlled loop. Rather than deciding whether to

repeat or not on a condition, for loops are used to count some number of iterations. The

Java for loop is far more flexible than a typical counting loop though and can also serve as

a conditional loop like the while loop. For now, we will only use it as a counting loop.

Whereas the while loop contains the condition and the body, the for loop has two additional

parts called the initialization and increment. The form of the for loop is
 for(initialization; condition; increment)

 body;

As with the while loop, if the body consists of more than one instruction, it must be placed

in { }. The initialization is used to initialize the variable(s) that will be used in the condition

and increment part. Such a variable is called the loop variable. The increment is used to

alter that variable, often incrementing it by 1 but not necessarily. Here are some example

loops (without the bodies) to illustrate what they look like.

 for(i=0;i<10;i++) // iterate from 0 to 9

 for(i=10;i>=0;i--) // iterate from 10 down to 0

 for(i=a;i<b;i++) // iterate from a to b-1 where a and b are int variables

You can initialize and increment more than one loop variable, as shown in the following.
for(i=0,j=n;i<j;i++,j=j-i)

CSC 260L: Java Programming Lab 6

Part 7: A for loop Example

The example that we saw in Part 2 is very conveniently expressed as a for loop:

This loop starts by setting n to 0. Next, the loop tests n < 10. If true, the loop body executes

(n is output) and the incrementing step executes, n is incrementing from 0 to 1. Since n is

still less than 10, the loop body executes followed by incrementing n to 2. This continues

until n is incremented to 10. At that point, n < 10 is false, so the loop terminates. This

code will output 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 on separate lines. Why doesn’t it output 10?

Because once n is equal to 10, n < 10 is false. So we never do the loop body when n = 10.

How can we make it output 10? Change the condition from n < 10 to n < 11 or n <= 10.

Why do we start at 0? This has something to do with how Java handles characters in Strings

and elements in arrays. We’ll hold from understanding this now and revisit it later in the

semester.

Why do we have int in parentheses? We can handle our loop variable in two ways. We

can declare it somewhere before the loop or we can declare it in the loop. Declaring it in

the loop means that the variable is only declared for the contents of the loop. For instance,

in the following code we get a syntax error in the last instruction because n is not declared

in that location of the program. Had we done int n; before the loop, we would be ok.

Why then do we declare n in the loop? A lot of programmers do it out of convenience or

laziness. They wait until they write a loop to decide that they need n, and so they declare

it was they write the loop itself.

Part 8: Common Pitfalls

The following pitfalls are directly analogous to those that we saw earlier for while loops.

1.

Note that you can leave the incrementing portion empty but it is risky because you can get

an infinite loop. You can also leave the initialization portion empty as in
 for(; n < 10; n++)

2.

for (int n = 0; n < 10; n++)

{

 System.out.println(n);

}

Logic error!

This is an infinite loop since variable n is never

updated; the boolean expression is always true.

Logic error!

Also an infinite loop since the extra semicolon

at the end of the for statement (first line) is

interpreted as the loop body.

for (int n = 0; n < 10;)

{

 System.out.print(n);

}

for (int n = 0; n < 10; n++);

{

 System.out.println(n);

}

for (int n = 0; n < 10; n++)

{

 System.out.println(n);

}

System.out.print(‘‘Enter an integer number: ’’);

n=in.nextInt();

CSC 260L: Java Programming Lab 6

3.

Part 9: For Loop Exercise

You are to write a program that generates the second, third, and fourth powers of a list of

whole numbers from 1 to n where n is input by the user. Write a Java program to do this.

First, ask the user for the largest of the whole numbers to use (n). Second, output column

headers (see below, n, n^2, n^3, n^4). Then, use a for loop to iterate from 1 to n, computing

each of that loop variable to the second power, third power and fourth power. Assuming

your loop variable is called i, you can do this either as i*i or Math.pow(i,2). To output the

values in nice columns as shown below, separate each output with a tab (“\t”). This is

similar to using \n for a new line.

Test your program with different input values such as 5, 10, 1, 0 and -1. For 0 and -1, you

should get no output at all. If you wrote your loop correctly, that will be the case.

Debugging tip: If you get incorrect results when running code that contains a loop, place

some print statements inside the loop to print the values of any variables that you think

might be involved in the errors. This helps you check what your loop is actually doing.

Part 10: One More Program

Write one additional program which itself contains two loops. You will have to decide

which loop type to use and how to write each one. Both loops will have a loop body that

consists of a computation and an output.

 Loop 1: sum up all of the values from 1 to 10, outputting the sum as you go. For

instance, it will output 1, 3 (1+2), 6 (1+2+3), 10 (1+2+3+4), etc (on separate lines).

 Loop 2: sum up all of the values starting at 1 and going until the sum is greater

than 100, again outputting results as you go.

You will have to decide what type of loops to use and how to write each, and what other

variables and instructions are needed in your program.

Part 11: Submitting Your Assignment

Print or email all 3 programs (parts 5, 9 and 10). You do not have to submit any output.

n n^2 n^3 n^4

1 1 1 1

2 4 8 16

3 9 27 81

4 16 64 256

5 25 125 625

for (int n = 0; m < 10; n++)

{

 System.out.println(n);

}

Logic error!

This is possibly an infinite loop in

that you are comparing the wrong

variable – the loop is using n, you are

comparing m.

