Accuracy, Precision, and Significant Figures

accuracy - a measure of the deviation of the measured value from the true or accepted value ($\%$ error, etc.)
precision - a measure of the agreement of experimental measurements with each other (range, standard deviation, etc.)

Significant Figures

Digits expressing a measurement (or the results of a calculation involving such measurements) such that only the last digit is uncertain are called significant figures or significant digits.

Rules for counting the number of significant digits in a properly-reported measurement:

1. Nonzero digits are always significant. $\quad 1.245 \mathrm{~m} \quad 4 \mathrm{sig}$. fig.
2. Leading zero's (zero's before any nonzero digit) are not significant. 0.00421 g 3 sig. fig.
3. Embedded zero's are significant. $\quad 205.01 \mathrm{~g} \quad 5 \mathrm{sig}$. fig.
4. Trailing zero's behind the decimal point are significant $\quad 2.500 \mathrm{~m} \quad 4 \mathrm{sig}$. fig. Trailing zero's in front of the decimal point- can't tell $1000 \mathrm{~s} ? 1,2,3$ or 4, can't tell

For a number in scientific notation, the pre-exponential factor indicates the number of significant digits. example: $2.50 \times 10^{5} \mathrm{~g} \quad 3$ sig. fig.

An exact number can be considered to have a infinite number of significant digits. Many integers are exact. Some other numbers are exact; for example, there are exactly 2.54 cm in one inch.

Significant Figures and Mathematical Operations

addition and subtraction - retain as many digits to the right of the decimal as in the number with the fewest significant digits to the right of the decimal.
example: $215.47 \mathrm{~g}+918.251 \mathrm{~g}-0.000458 \mathrm{~g}=1133.72 \mathrm{~g}$
multiplication and division - retain as many significant digits as in the number with the fewest significant digits.
example: $(214.21 \mathrm{~g}) \times(11.2 \mathrm{~cm}) /(17.413 \mathrm{~g})=138 \mathrm{~cm}$

Rounding

If the first digit to be discarded is a 4 or less, the value of the last digit retained is not changed. example: 1.8453 rounded to two digits is 1.8

If the first digit to be discarded is a 5 or above, the value of the last digit retained is increased by 1. example: 1.8453 rounded to the second decimal place is 1.85

